The nth Roots of Unity

 $=(1)^{1/n}$ The nth roots of unity, it means any complex number z, which satisfies the equation $z = 1$ or z

or $z = cos(2k\pi/n) + isin(2k\pi/n)$, where $k = 0, 1, 2, ..., (n - 1)$

Properties of nth Roots of Unity

- 1. nth roots of unity form a GP with common ratio $e^{i(2\pi/n)}$.
- 2. Sum of nth roots of unity is always 0.
- 3. Sum of nth powers of nth roots of unity is zero, if p is a multiple of n
- 4. Sum of pth powers of nth roots of unity is zero, if p is not a multiple of n.
- 5. Sum of pth powers of nth roots of unity is n, ifp is a multiple of n.
- $(n 1)$ 6. Product of nth roots of unity is (-1) .
- 7. The nth roots of unity lie on the unit circle $|z| = 1$ and divide its circumference into n equal parts.

The Cube Roots of Unity

Cube roots of unity are $1, \omega, \omega$,

where $\omega = -1/2 + i\sqrt{3}/2 = e^{(i2\pi/3)}$ and $\omega = (-1 - i\sqrt{3})/2$

 $\omega^{3r+1} = \omega, \omega^{3r+2} = \omega^2$

Properties of Cube Roots of Unity

(i) $1 + \omega + \omega^{2r} =$ 0, if r is not a multiple of 3. 3, if r is,a multiple of 3.

(ii) $\omega^3 = \omega^{3r} = 1$

(iii) $\omega^{3r+1} = \omega, \omega^{3r+2} = \omega^2$

(iv) Cube roots of unity lie on the unit circle $|z| = 1$ and divide its circumference into 3 equal parts.

(v) It always forms an equilateral triangle.

(vi) Cube roots of -1 are $-1, -\omega, -\omega^2$.

Important Identities

(i)
$$
x^2 + x + 1 = (x - \omega)(x - \omega^2)
$$

\n(ii) $x^2 - x + 1 = (x + \omega)(x + \omega^2)$
\n(iii) $x^2 + xy + y^2 = (x - y\omega)(x - y\omega^2)$
\n(iv) $x^2 - xy + y^2 = (x + \omega y)(x + y\omega^2)$
\n(v) $x^2 + y^2 = (x + iy)(x - iy)$
\n(vi) $x^3 + y^3 = (x + y)(x + y\omega)(x + y\omega^2)$
\n(vii) $x^3 - y^3 = (x - y)(x - y\omega)(x - y\omega^2)$
\n(viii) $x^2 + y^2 + z^2 - xy - yz - zx = (x + y\omega + z\omega^2)(x + y\omega^2 + z\omega)$
\nor $(x\omega + y\omega^2 + z)(x\omega^2 + y\omega + z)$
\nor $(x\omega + y + z\omega^2)(x\omega^2 + y + z\omega)$
\nor $(x\omega + y + z\omega^2)(x\omega^2 + y + z\omega)$
\n(ix) $x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x + \omega y + \omega^2 z)(x + \omega^2 y + \omega z)$

Geometrical Representations of Complex Numbers

1. Geometrical Representation of Addition

If two points P and Q represent complex numbers z_1 and z_2 respectively, in the Argand plane, then the sum $z_1 + z_2$ is represented

by the extremity R of the diagonal OR of parallelogram OPRQ having OP and OQ as two adjacent sides.

2. Geometrical Representation of Subtraction

Let $z_1 = a_1 + ib_1$ and $z_2 = a_2 + ia_2$ be two complex numbers represented by points P (a_1, b_1) and $Q(a_2, b_2)$ in the Argand plane. Q' represents the complex number $(-z_2)$. Complete the parallelogram OPRQ' by taking OP and OQ' as two adjacent sides.

The sum of z_1 and $-z_2$ is represented by the extremity R of the diagonal OR of parallelogram OPRQ'. R represents the complex number $z_1 - z_2$.

3. Geometrical Representation of Multiplication of Complex Numbers

R has the polar coordinates $(r_1r_2, \theta_1 + \theta_2)$ and it represents the complex numbers z_1z_2 .

4. Geometrical Representation of the Division of Complex Numbers

R has the polar coordinates $(r_1/r_2, \theta_1 - \theta_2)$ and it represents the complex number z_1/z_2 . |z|=|z| and arg (z) = – arg (z). The general value of arg (z) is $2n\pi - \arg$ (z).

If a point P represents a complex number z, then its conjugate i is represented by the image of P in the real axis.

Concept of Rotation

Let z_1 , z_2 and z_3 be the vertices of a \triangle ABC described in anti-clockwise sense. Draw OP and OQ parallel and equal to AB and AC, respectively. Then, point P is $z_2 - z_1$ and Q is $z_3 - z_1$. If OP is rotated through angle a in anti-clockwise, sense it coincides with OQ.

Important Points to be Remembered

(a) ze^{iα} a is the complex number whose modulus is r and argument $\theta + \alpha$.

(b) Multiplication by $e^{-i\alpha}$ to z rotates the vector OP in clockwise sense through an angle α .

(ii) If z_1 , z_2 , z_3 and z_4 are the affixes of the points A, B,C and D, respectively in the Argand plane.

(a) AB is inclined to CD at the angle arg $[(z_2 - z_1)/(z_4 - z_3)]$.

(b) If CD is inclines at 90° to AB, then arg $[(z_2 - z_1)/(z_4 - z_3)] = \pm(\pi/2)$.

(c) If z_1 and z_2 are fixed complex numbers, then the locus of a point z satisfying arg $[([(z$ z_1)/(z – z₂)] = $\pm(\pi/2)$.

Logarithm of a Complex Number

Let $z = x + iy$ be a complex number and in polar form of z is re^{i θ}, then

$$
\log(x + iy) = \log (re^{i\theta}) = \log (r) + i\theta
$$

$$
\log(\sqrt{x^2 + y^2}) + i \tan^{-1} (y/x)
$$

or $log(z) = log (|z|) + iamp (z)$,

In general,

$$
z = re^{i(\theta + 2n\pi)}
$$

 $\log z = \log|z| + \arg z + 2n\pi i$

Applications of Complex Numbers in Coordinate Geometry

Distance between complex Points

(i) Distance between $A(z_1)$ and $B(1)$ is given by

 $AB = |z_2 - z_1| = \sqrt{(x_2 + x_1)^2 + (y_2 + y_1)^2}$

where $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$

(ii) The point $P(z)$ which divides the join of segment AB in the ratio $m : n$ is given by

 $z = (mz_2 + nz_1)/(m + n)$

If P divides the line externally in the ratio $m : n$, then

 $z = (mz_2 - nz_1)/(m - n)$

Triangle in Complex Plane

(i) Let ABC be a triangle with vertices A (z_1) , B (z_2) and C (z_3) then

(a) Centroid of the $\triangle ABC$ is given by

 $z = 1/3(z_1 + z_2 + z_3)$

(b) Incentre of the AABC is given by

 $z = (az_1 + bz_2 + cz_3)/(a + b + c)$

(ii) Area of the triangle with vertices $A(z_1)$, $B(z_2)$ and $C(z_3)$ is given by

$$
\Delta = \frac{1}{2} \begin{vmatrix} z_1 & \overline{z}_1 & 1 \\ z_2 & \overline{z}_2 & 1 \\ z_3 & \overline{z}_3 & 1 \end{vmatrix}
$$

For an equilateral triangle,

$$
z_1^2 + z_2^2 + z_3^2 = z_2 z_3 + z_3 z_1 + z_1 z_2
$$

(iii) The triangle whose vertices are the points represented by complex numbers z_1 , z_2 and z_3 is equilateral, if

$$
\frac{1}{z_2 - z_3} + \frac{1}{z_3 - z_1} + \frac{1}{z_1 - z_2} = 0
$$

i.e.,
$$
z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_2 z_3 + z_3 z_1
$$

Straight Line in Complex Plane

(i) The general equation of a straight line is $az + az + b = 0$, where a is a complex number and b is a real number.

(ii) The complex and real slopes of the line $az + az$ are $-a/a$ and $-i[(a + a)/(a - a)]$.

(iii) The equation of straight line through z_1 and z_2 is $z = tz_1 + (1 - t)z_2$, where t is real.

(iv) If z_1 and z_2 are two fixed points, then $|z - z_1| = z - z_2|$ represents perpendicular bisector of the line segment joining z1 and z2.

(v) Three points z_1 , z_2 and z_3 are collinear, if

 $\begin{vmatrix} z_1 & \overline{z}_1 & 1 \\ z_2 & \overline{z}_2 & 1 \\ z_3 & \overline{z}_3 & 1 \end{vmatrix} = 0$

This is also, the equation of the line passing through 1, z_2 and z_3 and slope is defined to be $(z_1 - z_2)$ z_2)/ $z_1 - z_2$

(vi) Length of Perpendicular The length of perpendicular from a point z_1 to $az + az + b = 0$ is given by $|az_1 + az_1 + b|/2|a|$

(vii) arg $(z - z_1)/(z - z_2) = \beta$

Locus is the arc of a circle which the segment joining z_1 and z_2 as a chord.

(viii) The equation of a line parallel to the line $az + az + b = 0$ is $az + az + \lambda = 0$, where $\lambda \in \mathbb{R}$.

(ix) The equation of a line parallel to the line $az + az + b = 0$ is $az + az + i\lambda = 0$, where $\lambda \in \mathbb{R}$.

(x) If z_1 and z_2 are two fixed points, then I $z - z_1 = 1$ z $z_2 = 1$ represents perpendicular bisector of the segment joining $A(z1)$ and $B(z2)$.

(xi) The equation of a line perpendicular to the plane $z(z_1 - z_2) + z(z_1 - z_2) = |z_1|^2 - |z_2|^2$.

(xii) If z_1 , z_2 and z_3 are the affixes of the points A, B and C in the Argand plane, then

(a)
$$
\angle BAC = arg[(z_3 - z_1/z_2 - z_1)]
$$

(b) $[(z_3 - z_1)/(z_2 - z_1)] = |z_3 - z_1|/|z_2 - z_1|$ (cos $\alpha + i\sin \alpha$), where $\alpha = \angle BAC$.

(xiii) If z is a variable point in the argand plane such that arg $(z) = \theta$, then locus of z is a straight line through the origin inclined at an angle θ with X-axis.

(xiv) If z is a variable point and z_1 is fixed point in the argand plane such that $(z - z_1) = \theta$, then locus of z is a straight line passing through the point z_1 and inclined at an angle θ with the Xaxis.

(xv) If z is a variable point and z_1 , z_2 are two fixed points in the Argand plane, then

(a)
$$
|z - z_1| + |z - z_2| = |z_1 - z_2|
$$

Locus of z is the line segment joining z_1 and z_2 .

(b) $|z - z_1| - |z - z_2| = |z_1 - z_2|$

Locus of z is a straight line joining z_1 and z_2 but z does not lie between z1 and z_2 .

(c) $arg[(z - z_1)/(z - z_2)] = 0$ or &pi:

Locus z is a straight line passing through z_1 and z_2 .

(d)
$$
|z - z_1|^2 + |z - z_2|^2 = |z_1 - z_2|^2
$$

Locus of z is a circle with z_1 and z_2 as the extremities of diameter.

Circle in Complete Plane

(i) An equation of the circle with centre at z_0 and radius r is

$$
|z-z_0|=r
$$

or $zz - z_0z - z_0z + z_0$

- $|z z_0| < r$, represents interior of the circle.
- $|z z_0| > r$, represents exterior of the circle.
- $|z z_0| \le r$ is the set of points lying inside and on the circle $|z z_0| = r$. Similarly, $|z z_0|$ $|z_0| \ge r$ is the set of points lying outside and on the circle $|z - z_0| = r$.
- **General equation of a circle is**

 $zz - az - az + b = 0$

where a is a complex number and b is a real number. Centre of the circle $= -a$

Radius of the circle = $\sqrt{aa-b}$ or $\sqrt{|a|^2-b}$

(a) Four points z_1 , z_2 , z_3 and z_4 are concyclic, if

 $[(z_4 - z_1)(z_2 - z_3)]/[(z_4 - z_3)(z_2 - z_1)]$ is purely real.

(ii) $|z - z_1|/|z - z_2| = k \Rightarrow$ Circle, if $k \neq 1$ or Perpendicular bisector, if $k = 1$

(iii) The equation of a circle described on the line segment joining z_1 and \bar{z}_1 as diameter is (\bar{z} – $(z_1)(z-z_2) + (z-z_2)(z-z_1) = 0$

(iv) If z_1 , and z_2 are the fixed complex numbers, then the locus of a point z satisfying arg $[(z$ z_1 /(z – z₂)] = $\pm \pi$ / 2 is a circle having z₁ and z₂ at the end points of a diameter.

Conic in Complex plane

(i) Let z_1 and z_2 be two fixed points, and k be a positive real number.

If $k > |z_1 - z_2|$, then $|z - z_1| + |z - z_2| = k$ represents an ellipse with foci at $A(z_1)$ and $B(z_2)$ and length of the major axis is k.

(ii) Let z_1 and z_2 be two fixed points and k be a positive real number.

If $k \neq |z_1 - z_2|$, then $|z - z_1| - |z - z_2| = k$ represents hyperbola with foci at $A(z_1)$ and $B(z_2)$.

Important Points to be Remembered

• $\sqrt{-a} \times \sqrt{-b} \neq \sqrt{ab}$

 $\sqrt{a} x \sqrt{b} = \sqrt{ab}$ is possible only, if both a and b are non-negative.

So, $i^2 = \sqrt{-1} x \sqrt{-1} \neq \sqrt{1}$

- is neither positive, zero nor negative.
- Argument of 0 is not defined.
- Argument of purely imaginary number is $\pi/2$
- Argument of purely real number is 0 or π .
- If $|z + 1/z| = a$ then the greatest value of $|z| = a + \sqrt{a^2 + 4/2}$ and the least value of $|z| = -a$ $+ \sqrt{a^2 + 4/2}$
- The value of $i^i = e^{-\pi^2}$
- The complex number do not possess the property of order, i.e., $x + iy < (or) > c + id$ is not defined.
- The area of the triangle on the Argand plane formed by the complex numbers z, iz and z + iz is $1/2|z|^2$.
- (x) If ω_1 and ω_2 are the complex slope of two lines on the Argand plane, then the lines are

(a) perpendicular, if $\omega_1 + \omega_2 = 0$. (b) parallel, if $\omega_1 = \omega_2$.